Abstract
Quantum chemical density functional theory (DFT) calculations and spectral data were employed to investigate the possibility of the excited-state double proton transfer (ESDPT) in lumichrome crystals. The calculations in a lumichrome dimer predict a transfer of a proton in the first excited state, leading to a cation-anion pair. The presently reported X-ray structure of 1,3-dimethyllumichrome and its complex solid-state luminescence indicate that also in this molecule intermolecular hydrogen bonds might be involved in the photophysics. The long-wavelength emission in lumichrome crystals peaked at 530 nm is attributed to excited-state proton transfer, whereas a wider emission band in methylated lumichrome derivatives peaked at 560 nm is attributed to ions formed upon photoexcitation of the crystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.