Abstract

The comprehensive observational study of Bedard (2005) provisionally found that the infrasound of a tornado is discernible from the infrasound of generic cloud processes in a convective storm. This paper discusses an attempt to corroborate the reported observations of distinct tornado infrasound with numerical simulations. Specifically, this paper investigates the infrasound of an ordinary tornado in a numerical experiment with the Regional Atmospheric Modeling System, customized to simulate acoustic phenomena. The simulation has no explicit parameterization of microphysical cloud processes, but creates an unsteady tornado of moderate strength by constant thermal forcing in a rotational environment. Despite strong fluctuations in the lower corner flow and upper outflow regions, a surprisingly low level of infrasound is radiated by the vortex. Infrasonic pressure waves in the 0.1Hz frequency regime are less intense than those which could be generated by core-scale vortex Rossby (VR) waves of modest amplitude in similar vortices. Higher frequency infrasound is at least an order of magnitude weaker than expected based on infrasonic observations of tornadic thunderstorms. Suppression of VR waves (and their infrasound) is explained by the gradual decay of axial vorticity with increasing radius from the center of the vortex core. Such non-Rankine wind-structure is known to enable the rapid damping of VR waves by inviscid mechanisms, including resonant wave-mean flow interaction and “spiral wind-up” of vorticity. Insignificant levels of higher frequency infrasound may be due to oversimplifications in the computational setup, such as the neglect of thermal fluctuations caused by phase transitions of moisture in vigorous cloud turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.