Abstract

Nine pseudoheterodimeric mammalian adenylate cyclases possess two dissimilar hexahelical membrane domains (TM1 and TM2), two dissimilar cyclase-transducing-elements (CTEs) and two complementary catalytic domains forming a catalytic dimer (often termed cyclase-homology-domain, CHD). Canonically, these cyclases are regulated by G-proteins which are released upon ligand activation of G-protein-coupled receptors. So far, a biochemical function of the membrane domains beyond anchoring has not been established. For almost 30 years, work in our laboratory was based on the hypothesis that these voluminous membrane domains possess an additional physiological, possibly regulatory function. Over the years, we have generated numerous artificial fusion proteins between the catalytic domains of various bacterial adenylate cyclases which are active as homodimers and the membrane receptor domains of known bacterial signaling proteins such as chemotaxis receptors and quorum-sensors which have known ligands. Here we summarize the current status of our experimental efforts. Taken together, the data allow the conclusion that the hexahelical mammalian membrane anchors as well as similar membrane anchors from bacterial adenylate cyclase congeners are orphan receptors. A search for as yet unknown ligands of membrane-delimited adenylate cyclases is now warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.