Abstract

Photobleaching is the main limiting factor in single molecule studies by optical techniques. We investigated the dependence of photostability of terrylene diimide (TDI) derivative on its environment using confocal fluorescence microscopy. Seven different polymers were tested. Depending on the matrix, photobleaching quantum yields vary by 2 orders of magnitude. Their values correlate with parameters characterizing oxygen mobility in polymers: diffusion coefficient and permeability. Poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) exhibit the lowest photodestruction quantum yields. Additional enhancement of photostability can be achieved by aging of PVC or by flushing the sample with nitrogen, which confirms the involvement of oxygen in photodestruction. Different character of the time traces of the intensity of emission from single TDI molecules is observed for different polymer matrices, ranging from intense blinking in the least stable polycarbonate, to practically no blinking in the most stable PVC. These results suggest a photodegradation mechanism involving self-sensitized photooxidation in oxygen complexes of TDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call