Abstract

In this paper, we present a theoretical analysis of heating spherical bimetallic nanoparticles with a silver core and a golden shell using laser radiation. The aim of the work is to prove a possibility for applying laser hyperthermia in oncology with use of these nanoparticles. At this, a power and distribution of heat sources in a nanoparticle should be found with subsequent estimation of the temperature in its environs. We investigated a spatial distribution of the field energy in a particle within the electrostatic approximation for homogeneous field acting along the sphere axis. In this case electrostatic energy keeps a stable value in the core but corresponding expression for the shell consists of two terms of the series in expansion on Legendre polynomials. We have constructed a solution of the heat transfer equation for a sphere in a capsule with internal heat sources which intensity is formed by energy distribution of the electrical field. The calculations made show that the temperature necessary for destruction of onco-cells in the nearest environment of the particle can be reached using the laser power that is safe enough for a body system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call