Abstract

To unravel the relationship between silylene-bridged metallocene catalyst structures and polymerization conditions and their effect on the performance in in-reactor functionalization of polypropylene, the behaviors of rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2/MMAO, rac-Me2Si(Ind)2ZrCl2, rac-Me2Si(2-Me-4-Ph-Ind)2HfCl2, and rac-Me2Si(Ind)2HfCl2 in propylene/aluminum alkyl-passivated 10-undecen-1-ol copolymerization were compared. Kinetic analysis revealed higher catalytic activities for zirconocenes compared to analogous hafnocenes. Both the zirconocene and hafnocene with substituted indenyl ligands afforded a higher molecular weight capability, improved stereo-selectivity, and enhanced ability to incorporate functionalized comonomers compared to their non-substituted congeners. An in-depth study of polypropylene functionalization using the best performing catalyst system, rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2/MMAO, at temperatures ranging from 40 to 100 °C, revealed a linear inversely proportional correlation of polymerization temperature with functionalized comonomer reactivity (↑Tp → ↓ r1), copolymer molecular weight (↑Tp → ↓Mn), and melting temperature (↑Tp → ↓Tm). While performing well under standard laboratory polymerization conditions, rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2/MMAO showed limited molecular weight and stereo-selectivity capabilities under high-temperature (130–150 °C) solution process conditions. Although immobilization of rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 onto silica, allowing it to be used under industrially relevant slurry and gas-phase conditions, led to an active catalyst, it failed to incorporate any functionalized comonomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.