Abstract
Psoriatic Arthritis (PsA) is characterized by bone erosive damage often associated with exuberant bone formation especially in enthesial sites. Dkk-1 and sclerostin are the main inhibitors of the WNT/β-catenin signaling pathway and play a key role in the regulation of both bone formation and resorption. We performed this study in order to compare the serum levels of the WNT-pathway regulators along with bone turnover markers (BTM) and parathyroid hormone (PTH) between three different groups: one group of female patients affected by PsA, one group of female patients affected by rheumatoid arthritis (RA), and healthy female controls (HC). This is a cross-sectional study including 33 patients with PsA classified with the CASPAR criteria, 35 HC, and 28 patients with RA classified with the ACR/EULAR 2010 criteria. Intact N-propeptide of type I collagen (PINP), C-terminal telopeptide of type I collagen (CTX-I), Dickkopf-related-protein 1 (Dkk-1), sclerostin, PTH, and 25OH-vitamin D serum levels were dosed. The PsA group showed significantly lower Dkk-1 levels when compared to the HC and RA groups. Dkk-1 in the RA group was significantly higher than HC. A similar trend was documented for PTH. In the PsA group, CTX-I was found to be lower than in both the RA and HC groups. This study demonstrated for the first time that Dkk-1 levels in PsA are lower than HC, in contrast with RA, in which they are increased. These results might contribute to explain the different bone involvement of the two different diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.