Abstract

Recent research and development on the femtosecond laser has shown that it is a powerful tool for high precision micromachining. However, the femtosecond laser-material interaction is fast and complex due to its ultrashort pulse duration. Consequently, it is not an easy task to optimize process parameters and to ensure high-quality fabrication. In this context, we propose an in-line monitoring technique based on plasma plume diagnostics. By analyzing the spectra of the femtosecond laser-induced plasma, which was detected and analyzed using a spectrometer, the plasma temperature of the copper sample was estimated. As drilling holes and cutting lines are two common applications in industry, the relationship between the emission light and the geometry of the fabricated structure was investigated based on the time-varying signals from the photodetector. These results will help us to understand the mechanism of femtosecond laser ablation so as to achieve high quality micromachining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call