Abstract
Fabrication of thin-wall components using the laser powder bed fusion (LPBF) additive manufacturing (AM) technology was investigated for two “hard-to-weld” high gamma prime Ni-based superalloys RENÉ 65 (R65) and RENÉ 108 (R108). Simple block parts with wall thicknesses of 0.25 mm, 1.00 mm, and 5.00 mm are printed using a bidirectional laser scanning strategy without layer-wise rotation. Parts with walls thinner than 5 mm fail before reaching the designated build height. Results indicate that reduction of limiting build height (LBH) corresponds to the reduction of part thickness and is unaffected by alloy composition. On the contrary, the number of internal micro-cracks along columnar grain boundaries in the build direction (BD) increases with part thickness and is significantly higher in R108 than R65. These findings suggest that reduced LBH in parts with thinner walls is not caused by internal micro-crack formation. Fractography and finite element analysis (FEA) of the in-process thermal stresses show that the LBH trend is not explained by the conventional cracking mechanism. Simulations suggest that part thickness affects stress distribution leading to more substantial distortion and consequent failure to add layers for continued fabrication of thinner parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.