Abstract

Direct drive rotary and linear actuators significantly enhance the performance of multi-axis machine tools. The absence of mechanical gearing, however, increases the nonlinear dynamic coupling between the axes, making it challenging to identify accurate virtual models or so-called ‘digital twins’. This article presents a new approach to estimate nonlinear multivariable dynamic models non-intrusively, using in-process CNC data. Major influences, such as multi-rigid body motion, actuator force/torque ripples, nonlinear friction, feedforward/feedback control, and vibration modes, are systematically detected and identified. The new method is demonstrated in digital twin estimation for a 5-axis laser drilling machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.