Abstract

A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due to the radial expansion resulting from its rotation. The corresponding nondimensionalized natural frequencies are seen to depend only on the nondimensionalized rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all non-zero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.