Abstract

The technique of acoustic generation by microwave excitation in structures is applied here to study the in-plane vibration of full or hollowed elliptic plates. The absorption of pulsed microwave irradiations by a material causes a sudden rise of its temperature and the generation of an acoustic wave by thermoelastic effect. A semi-analytic theoretical model is developed to predict the in-plane displacement fields in elliptic thin plates submitted to a uniform temperature rise. It is assumed that the isotropic and viscoelastic plate constitutive material is submitted to a thermoelastic excitation under a plane stress state. The wave equations that govern the Helmholtz displacement potentials are resolved in an elliptic cylindrical system of coordinates by means of infinite angular and radial Mathieu functions series. The displacement field is finally obtained by taking into account the zero stress conditions on the boundaries of the plates. The comparison between the theoretical and the experimental responses of full and hollowed elliptic plates shows a good agreement that permits the validation of the developed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.