Abstract
A technique using acousto-optic modulated partially incoherent stroboscopic imaging for measurement of in-plane motion of microelectromechanical systems (MEMS) is presented. Vibration measurement is allowed by using flashes of the partially incoherent light source to freeze the positions of the microstructure at 12 equally spaced phases of the vibration period. The first-order diffracted beam taken out by an acousto-optic modulator (AOM) from the light beam of a laser is made partially incoherent by a rotating diffuser and then serves as the stroboscopic light source. Both the MEMS excitation signal and the flash control signal are provided by a dual-channel function generator. The main advantage of this measurement method is the absence of a stroboscopic generator and a high speed digital camera. Microscale prototypes are fabricated and tested. Quantitative estimates of the harmonic responses of the prototypes are obtained from the recorded images. The results agree with those obtained with a commercial MEMS motion analyzer TM with relative errors less than 2%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.