Abstract

Linear in-plane soil–structure interaction in two dimensions (2D) is studied in fluid-saturated, poroelastic, layered half-space using the Indirect Boundary Element Method (IBEM). The structure is a shear wall supported by a rigid embedded foundation. Exact stiffness matrices for the soil layer and half-space, and Green׳s functions of uniformly distributed loads and pore pressure on an inclined line are derived. Results of the system response in the frequency domain are presented for the special case of single soil layer over bedrock, semi-circular foundation and zero seepage force. The effects of water saturation, soil porosity, depth of soil layer, rigidity contrast between layer and bedrock are investigated in the frequency domain for incident plane P- and SV waves. The results suggest that water saturation may cause increase of the system frequency by more than 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call