Abstract

On self-assembled ${\mathrm{In}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{A}\mathrm{s}/\mathrm{G}\mathrm{a}\mathrm{A}\mathrm{s}(311)B$ quantum dots (QD's), photocurrent in the plane of QD arrays was measured under irradiation with wavelengths longer than 850 nm (1.46 eV). A sample with rather inhomogeneous QD sizes shows hopping conduction, indicating the localization of carriers in individual QD's. A two-dimensional QD superlattice, consisting of highly ordered and homogeneously sized QD's, exhibits negative differential conductance (NDC), i.e., photocurrent decrease with increasing applied voltage, in a limited electric-field range. The pre-NDC conduction is argued to arise from the miniband, which is evidenced by the photoluminescence, while the post-NDC conduction is found to be hopping as in a localized QD system, suggesting a miniband destruction under an in-plane electric field as low as $\ensuremath{\sim}{10}^{3}{\mathrm{V}\mathrm{}\mathrm{cm}}^{\mathrm{\ensuremath{-}}1}.$ The miniband transport is likely controlled by two-dimensional acoustic-phonon scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.