Abstract

There is an increasing demand for engineered wood products in modern structures. Birch plywood is promising in structural applications, due to the combined advantages of its superior mechanical properties and the cross lamination configuration. However, the off-axis mechanical properties of birch plywood have not been thoroughly investigated. The aim of this paper is to establish a comprehensive experimental dataset that could serve as the input in the analytical or numerical models to design birch plywood under various load conditions. Specifically, tensile, compressive and shear tests were conducted under five different angles to the face grain, i.e., from 0° (parallel) to 90° (perpendicular) to the face grain, with an interval of 22.5°. The stress–strain relationships, failure modes, strength and elastic properties of birch plywood are highly dependent on the load-to-face-grain angle. The strength and the elastic properties are also predicted by various analytical and empirical models. Parametric analyses are performed to study the influence of the interaction coefficient F12 in Tsai-Wu failure criterion and the Poisson’s ratio νxy in the transformation model on the predicted strength and modulus respectively. Lastly, the possibilities of predicting the on-axis shear modulus based on the off-axis uniaxial tests are discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.