Abstract

A novel hierarchical metamaterial with tunable negative Poisson’s ratio is designed by a re-entrant representative unit cell (RUC), which consists of star-shaped subordinate cells. The in-plane mechanical behaviors of star-re-entrant hierarchical metamaterial are studied thoroughly by finite element method, non-dimensional effective moduli and effective Poisson’s ratios (PR) are obtained, then parameters of cell length, inclined angle, thickness for star subordinate cell as well as the amount of subordinate cell along x, y directions for re-entrant RUC are applied as adjustable design variables to explore structure-property relations. Finally, the effects of the design parameters on mechanical behavior and relative density are systematically investigated, which indicate that high specific stiffness and large auxetic deformation can be remarkably enhanced and manipulated through combining parameters of both subordinate cell and parent RUC. It is believed that the new hierarchical metamaterial reported here will provide more opportunities to design multifunctional lightweight materials that are promising for various engineering applications.

Highlights

  • Re-entrant honeycomb structures that display negative Poisson’s ratios (NPR) are known to be one class of auxetic structures and have been used in many fields, such as aerospace and automotive industries

  • To understand how the geometrical parameters of the star-re-entrant representative unit cell (RUC) influence the effective mechanical properties of the new hierarchical metamaterial designed, parametric studies were conducted by using finite element models described in Section 3, and the numerical results are

  • To understand how the geometrical parameters of the star-re-entrant RUC influence the effective mechanical properties of the new hierarchical metamaterial designed, parametric studies were conducted by using finite element models described in Section 3, and the numerical results are presented and discussed as follows

Read more

Summary

Introduction

Re-entrant honeycomb structures that display negative Poisson’s ratios (NPR) are known to be one class of auxetic structures and have been used in many fields, such as aerospace and automotive industries. The multifunctionality of anisotropic re-entrant honeycomb has been widely studied for its static mechanical behavior [1,2,3,4], dynamic performance [5,6], thermal conductivity and heat transfer properties [7]. Considering hierarchical sub-structures to honeycombs and designing novel metamaterials with tailorable multi-functional properties, have attracted increasing attention in recent years. Sun et al [16] analytically studied the in-plane elastic moduli and thermal conductivity of a multifunctional hierarchical honeycomb (MHH), which is formed by replacing the solid cell walls of an original regular hexagonal honeycomb (ORHH) with three different isotropic honeycomb sub-structures possessing hexagonal, triangular or kagome lattices. The anisotropic multifunctional hierarchical honeycomb (AMHH) with triangular or kagome honeycomb substructures (OAHH) was proposed and the in-plane stiffness of these two kinds of AMHH was analytically

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.