Abstract

Motivated by recent experimental results reporting anomalous drag resistance behavior in dilute bilayer two-dimensional (2D) hole systems in the presence of a magnetic field parallel to the 2D plane, we have carried out a many-body Fermi liquid theory calculation of bilayer magnetodrag comparing it to the corresponding single layer magnetoresistance. In qualitative agreement with experiment we find relatively similar behavior in our calculated magnetodrag and magnetoresistance arising from the physical effects of screening being similarly modified ("suppressed") by carrier spin polarization (at "low" field) and the conductivity effective mass being similarly modified ("enhanced") by strong magneto-orbital correction (at "high" fields) in both cases. We critically discuss agreement and disagreement between our theory and the experimental results, concluding that the magnetodrag data are qualitatively consistent with the Fermi liquid theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.