Abstract

The dynamics and interaction of different electronic phases near the metal-to-insulator transition of the phase-separated ${({\mathrm{La}}_{0.5}{\mathrm{Pr}}_{0.5})}_{0.625}{\mathrm{Ca}}_{0.375}\mathrm{Mn}{\mathrm{O}}_{3}$ (LPCMO) thin film grown on NGO substrate was studied using the first-order reversal curves (FORC) diagram method for electric transport measurements. The in-plane angle-dependent remanence and coercivity field in the region of the ferromagnet metallic phase was measured using the macroscopic magnetization technique. These measurements suggest an in-plane uniaxial magnetic anisotropy for the film with a uniaxial anisotropic constant (Ku) of $\ensuremath{\sim}1.2\ifmmode\times\else\texttimes\fi{}{10}^{6}\phantom{\rule{0.16em}{0ex}}\mathrm{erg}/\mathrm{c}{\mathrm{m}}^{3}$ at 20 K. The angle dependence of the coercivity is best described by 1/cos\ensuremath{\theta} dependence indicating that the magnetization reversal occurs mainly through the depinning of the domain wall, a signature of nucleation and propagation mechanism. The correlation of FORC measurements, resistance relaxation, and macroscopic magnetic measurements indicate a fast reversal of electronic and magnetic phases towards the denser phase region and strong interaction of different phases for the LPCMO system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.