Abstract
Recent advances in multistory timber building design have led to new structural systems that allow open floor plans with large spans between frames and/or walls. Timber-concrete composite (TCC) flooring can achieve the spans required but has the potential to be flexible under diaphragm actions, which can significantly alter the seismic response of a building. In-plane experimental tests on a 3 m by 3 m one-third scale TCC floor were performed using quasi-static earthquake loading simulation. The experimental results indicate that the deformation between the floor and lateral load resisting systems (LLRS) is much greater than the in-plane deformation of the floor diaphragm. Hence, a floor system with similar aspect ratio can be modeled as a single-degree-of-freedom for future structural analyses. Different connections were considered between the floor unit and lateral restraints, which simulate the LLRS. The connection was either timber-to-timber or concrete-to-timber and incorporated screws or nails acting as dowels or inclined at 45°. Each connection type performed differently in terms of stiffness, strength, ductility capacity, and induced damage. Screws that were oriented at 45° to the connection interface were significantly stiffer than fasteners aligned orthogonal to the interface. There was little difference in the initial stiffness for the concrete-to-timber connection compared to the timber-to-timber connection. The testing indicated that a timber-to-timber interface is more desirable because of construction ease and reparability. The in-plane response of the floor system is modeled using finite elements and compared to experimental results. Design recommendations are provided for the cyclic strength of inclined wood fasteners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.