Abstract
This paper is devoted to identification of the most important factors responsible for formation of magnetic moments at edges of graphene-like nanoribbons. The main role is attributed to the Hubbard correlations (within unrestricted Hartree-Pock approximation) and intrinsic spin orbit interactions, but additionally a perpendicular electric field is also taken into account. Of particular interest is the interplay of the in-plane edge magnetism and the energy band gap. It is shown that, with the increasing electric field, typically the following phases develop: magnetic insulator (with in-plane spins). nomnagnetic narrow-band semiconductor, and nonmagnetic band insulator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.