Abstract

Re-entrant honeycombs have demonstrated promising applications in engineering fields attributed to better manufacturability and adaptability. Herein, the reinforced re-entrant honeycombs (RRH) with thickness and reinforced strut gradients are proposed, respectively, and their in-plane energy absorption is investigated through experiment, theoretical analysis, and simulation. Metallic specimens of uniform and graded RRH are manufactured through a step-by-step method. The deformation mode and plateau stress (PS) of these specimens are significantly influenced by both thickness and catenary gradients. Two PSs of RRH specimens are predicted theoretically with a relative error of less than 7.0%. Subsequently, the deformation mode and energy absorption of uniform and graded RRH, subjected to varying load rates, are investigated thoroughly with a numerical method verified against the experimental data. The results show that both thickness and catenary gradients can inspire multi-step deformation mode and prevent instability deformation. Compared to uniform RRH (U-RRH), the specific energy absorptions (SEA) of thickness gradient (TG)-123 (123 represents that the thicknesses from impact end to fixed end are t1, t2, t3) and TG-213 are enhanced by 52.2% and 49.8%, respectively, under quasi-static compression, the SEA of TG-132 and TG-123 are raised by 41.6% and 20.2%, respectively, under low-velocity impact, and the SEA of strut gradient (SG)-123 is 66.7% higher than that of U-RRH under high-velocity impact. More significant auxetic deformation does not always mean better energy absorption because there is also an increased tendency of global instability and earlier densification points. This work provides a novel approach to designing high-energy absorption honeycombs with low structural complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call