Abstract
Cellular materials with a gradient of properties become appealing as cores of the sandwich panels due to the possibility of improving strength and absorbed energy in lightweight components. 2D cellular structures designated by honeycombs have an anisotropic behaviour when loaded under in- and out-plane. Thus, when proposing new designs, it is essential to analyse how the in-plane arrangement with a gradient in cell wall thickness affects in-plane and out-of-plane mechanical properties. This work aims to study graded cellular structures in comparison with regular hexagonal honeycombs. Structures were manufactured by laser powder bed fusion using an aluminium alloy. Regular arrangements were formed with cells with the same thickness, while graded structures possessed a radial gradient of cell thickness. Three types of innovative gradients, where cell length varies radially along concentric layers, were analysed. The compressive properties of regular and graded structures were evaluated when loaded both under in-plane and out-of-plane conditions. Compression behaviour was assessed, both experimentally and by numerical modelling. Even though there is a mismatch between numerical and experimental results, they exhibit the same trends. All graded samples showed an increased mechanical performance when loaded under out-of-plane conditions in comparison with the results from tests under in-plane loading with values, for example, of stiffness four hundred times larger, absorbed energy around thirty times higher and with yield stress four times larger. The results showed that the graded samples attain higher values of strength, stiffness and absorbed energy in comparison with regular hexagonal honeycombs, for the same relative density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.