Abstract

In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances has robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the soil–pile–jacket interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes an interpretation of the dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies, dynamic amplification factors, and the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The incidence angle of seismic waves is an essential parameter, where, for some crucial angles, the internal forces and the maximum deformations can be doubled or more in comparison with the ones corresponding to other, less crucial angles. Therefore, the incidence angle considerably affects the response quantities. The results confirm that the in-place analysis is quite essential for the reliable design of new offshore platforms and the assessment of existing offshore structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.