Abstract

A rapid drop of the transcription repressor REST/NRSF during precursor differentiation into nerve cells is known to release the repression of hundreds of specific genes and thus to orchestrate the acquisition of the specific phenotype. REST, however, is important not only for differentiation, but also for the maintenance of key properties in mature nerve cell. The PC12 line is uniquely favorable for studying REST because, in addition to the wild-type, low REST neurosecretory cells, it includes spontaneously defective clones lacking neurosecretion, where REST is as high as in non-nerve cells. In this article, we summarize our cell biologic studies of two nerve cell-specific processes dependent on REST, neurosecretion and neurite outgrowth. We demonstrate that, in wild-type PC12 transfected with REST constructs, expression of genes encoding proteins of dense-core and synaptic-like vesicles is decreased, though, to different extents, with chromogranins being the most and the SNAREs (except SNAP25) the least affected. Concomitantly, dense core-vesicles decrease markedly in size but can still be discharged by regulated exocytosis. When, in contrast, dominant-negative constructs of REST are transfected in high-REST PC12, and the main effector enzymes of REST, histone deacetylases, are blocked, dense-core vesicles reappear and are discharged upon stimulation. In high-REST PC12, also neurite outgrowth is inhibited by down regulation of the NGF receptor. Concomitantly, however, high REST induces the expression of proteins and of an exocytic organelle, the enlargeosome, which sustain a Rac1-dependent form of neurite outgrowth, unknown until now, operative in PC12, in neuroblastoma SH-SY5Y cells, and also in neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.