Abstract

Combinatorial testing makes it possible to test large systems effectively while maintaining certain coverage guarantees. At the same time, the construction of optimized covering arrays (CAs) with a large number of columns is a challenging task. Heuristic and Metaheuristic approaches often become inefficient when applied to large instances, as the computation of the quality for new moves or solutions during the search becomes too slow. Recently, the generation of covering perfect hash families (CPHFs) has led to vast improvements to the state of the art for many different instances of covering arrays. CPHFs can be considered a compact form of a specific family of covering arrays. Their compact representation makes it possible to apply heuristic methods for instances with a much larger number of columns. In this work, we adapt the ideas of the well-known In-Parameter-Order (IPO) strategy for covering array generation to efficiently construct CPHFs, and therefore implicitly covering arrays. We design a way to realize the concept of vertical extension steps in the context of CPHFs and discuss how a horizontal extension can be implemented in an efficient manner. Further, we develop a horizontal extension strategy for CPHFs with subspace restrictions that identifies candidate columns greedily based on conditional expectation. Then using a local optimization strategy, a candidate may be adjoined to the solution or may replace one of the existing columns. An extensive set of computational results yields many significant improvements on the sizes of the smallest known covering arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.