Abstract
Angular microvibrations of platform jitter on the optical inter-orbit communications engineering test satellite are measured in space during ground-to-satellite laser communication links. The microaccelerations are measured by the onboard accelerometers at a sampling rate of 2048 Hz. The angular microvibrations are estimated from the measured microaccelerations using the tracking characteristics of the laser communications terminal and the conversion factor on the basis of microvibration data obtained from ground-based tests. The power spectral density (PSD) of the satellite microvibrations is analyzed by using the fast Fourier transform analysis and the data length is examined according to the frequency resolution of the PSD. The in-orbit measurements of the PSDs are compared with those obtained from the ground test. The angular microvibrational base motion is estimated and a PSD up to 1024 Hz is additionally provided as a database of the real measurement results with previously obtained in-orbit measurements. The measured results will contribute to the angular jitter estimation and the design of a tracking control loop for space laser communication systems in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.