Abstract

Space cameras play a pivotal role in various fields, such as astronomical exploration. When operating in orbit, these cameras encounter the relative motion between the target and the camera during the exposure, resulting in image motion, which affects the imaging quality. Therefore, it is necessary to compensate for this image motion. This paper investigates the in-orbit image motion compensation (IMC) method for space cameras with a long integration time based on a two-axis pointing platform. Firstly, the mechanical design of the camera is introduced. Secondly, the in-orbit IMC model for the camera is analyzed, and the angular motion needed for compensating for the image motion by the two-axis pointing platform are derived. Factors influencing the compensation accuracy are also analyzed. The effectiveness of the IMC model is verified through simulations. Finally, the in-orbit experimental results indicate that the energy concentration of the target star images obtained exceeded 70%, demonstrating excellent performance in space cameras and effectively enhancing imaging quality using IMC technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.