Abstract

Revealing the dynamic processes at the electrode-solution interface is imperative for understanding electrochemical phenomena. Most techniques have been developed to sense the electrode surface changes at the nanoscale, but provide limited information on potential-induced interfacial ion redistribution at the mesoscale. Herein, we present an in operando visualization method utilizing a microfabricated electrochemical cell combined with a laser scanning confocal microscope to observe high-resolution and fast-response interfacial processes. We report potential-induced formation and transformation of the Nernst diffusion layer, demonstrating that pulsed voltage dynamically perturbs the interface and promotes ion diffusion. This provides an additional insight into developing a dynamic manipulation method to control the electrochemical process. Our novel visualization method can easily be applied to monitor different ionic behaviors in electrochemical reactions at the mesoscale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call