Abstract
Transmission electron microscopy (TEM) is being pushed to new capabilities which enable studies on systems that were previously out of reach. Among recent innovations, TEM through liquid cells (LC-TEM) enables in operando observation of biological phenomena. This work applies LC-TEM to the study of biological components as they interact on an abiotic surface. Specifically, analytes or target molecules likeneuropeptide Y (NPY)are observed in operando on functional graphene field-effect transistor (GFET) biosensors. Biological recognition elements (BREs) identified using biopanning with affinity to NPY are used to functionalize graphene to obtain selectivity.On working devices capable of achieving picomolar responsivity to neuropeptide Y, LC-TEM reveals translational motion, stochastic positional fluctuations due to constrained Brownian motion, and rotational dynamics of captured analyte. Coupling these observations with the electrical responses of the GFET biosensors in response to analyte capture and/or release will potentially enable new insights leading to more advanced and capable biosensor designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.