Abstract
To monitor dynamic volume changes of electrode materials during electrochemical lithium storage and removal process is of utmost importance for developing high performance lithium storage materials. We herein report an in operando probing of mesoscopic structural changes in ordered mesoporous electrode materials during cycling with synchrotron-based small angel X-ray scattering (SAXS) technique. In operando SAXS studies combined with electrochemical and other physical characterizations straightforwardly show how porous electrode materials underwent volume changes during the whole process of charge and discharge, with respect to their own reaction mechanism with lithium. This comprehensive information on the pore dynamics as well as volume changes of the electrode materials will not only be critical in further understanding of lithium ion storage reaction mechanism of materials, but also enable the innovative design of high performance nanostructured materials for next generation batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.