Abstract

The superior colliculus (SC), via its projections to the pons, is a critical structure for driving rapid orienting movements of the visual axis, called gaze saccades, composed of coordinated eye-head movements. The SC contains a motor map that encodes small saccade vectors rostrally and large ones caudally. A zone in the rostral pole may have a different function. It contains superior colliculus fixation neurons (SCFNs) with probable projections to omnipause neurons (OPNs) of the pons. SCFNs and OPNs discharge tonically during visual fixation and pause during single-step gaze saccades. The OPN tonic discharge inhibits saccades and its cessation (pause) permits saccade generation. We have proposed that SCFNs control the OPN discharge. We compared the discharges of SCFNs and OPNs recorded while cats oriented horizontally, to the left and right, in the dark to a remembered target. Cats used multiple-step gaze shifts composed of a series of small gaze saccades, of variable amplitude and number, separated by periods of variable duration (plateaus) in which gaze was immobile or moving at low velocity (<25 degrees /s). Just after contralaterally (ipsilaterally) presented targets, the firing frequency of SCFNs decreased to almost zero (remained constant at background). As multiple-step gaze shifts progressed in either direction in the dark, these activity levels prevailed until the distance between gaze and target [gaze position error (GPE)] reached approximately 16 degrees. At this point, firing frequency gradually increased, without saccade-related pauses, until a maximum was reached when gaze arrived on target location (GPE = 0 degrees). SCFN firing frequency encoded GPE; activity was not correlated to characteristics or occurrence of gaze saccades. By comparison, after target presentation to left or right, OPN activity remained steady at pretarget background until first gaze saccade onset, during which activity paused. During the first plateau, activity resumed at a level lower than background and continued at this level during subsequent plateaus until GPE approximately 8 degrees was reached. As GPE decreased further, tonic activity during plateaus gradually increased until a maximum (greater than background) was reached when gaze was on goal (GPE = 0 degrees). OPNs, like SCFNs, encoded GPE, but they paused during every gaze saccade, thereby revealing, unlike for SCFNs, strong coupling to motor events. The firing frequency increase in SCFNs as GPE decreased, irrespective of trajectory characteristics, implies these cells get feedback on GPE, which they may communicate to OPNs. We hypothesize that at the end of a gaze-step sequence, impulses from SCFNs onto OPNs may suppress further movements away from the target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call