Abstract

This paper presents a reliable in-motion alignment algorithm for a low cost Strapdown Inertial Navigation System/Global Positioning System (SINS/GPS) combination under random misalignment angles, which transforms attitude alignment into an attitude estimation problem. Based on Rodrigues parameters, an alignment model with a linear state-space equation and a second order nonlinear measurement equation is established. Furthermore, by employing a Taylor expansion on the nonlinear measurement equation, we implement a second order Extended Kalman Filter (EKF2). The proposed method uses a single filter that can not only determine the initial attitude, but also estimate the sensor errors. In addition, a scheme is given for avoiding singularity, which makes the algorithm more widely suitable for random misalignment angles. Experimental ground tests are performed with a low-cost Micro-Electromechanical System (MEMS) SINS, which validates the efficacy of the proposed method. The performance compared to the traditional alignment algorithm is also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call