Abstract

Traditional disk-resident OLTP systems were mainly designed for computers with relatively small memory. Driven by the advance of hardware, OLTP systems need to be redesigned for larger memory and multi-core environments. Compared to disk-resident systems, in-memory systems have significant performance advantages, from the perspectives of both transaction throughput and query latency. Their performance is no longer limited by disk I/Os. Instead, the efficiency and scalability over multi-core CPUs become more important. In this paper, we survey and summarize a wide spectrum of design and implementation considerations that may affect the efficiency or scalability of an in-memory OLTP system. These considerations are concerned with most of the main components of databases, including concurrency control, logging, indexing and transaction compilation. For each of the components, we provide some in-depth analysis based on recent research works. This survey also aims to provide some guidance for designing or implementing high-performance in-memory OLTP systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.