Abstract

In-Memory Computing (IMC) is one of the most promising candidates for data-intensive computing accelerators of machine learning (ML). A key ML algorithm for dimensionality reduction and classification is principal component analysis (PCA), which heavily relies on matrix-vector multiplications (MVM) for which classic von Neumann architectures are not optimized. Here, we provide the experimental demonstration of a new IMC-based PCA algorithm based on power iteration and deflation executed in a 4-kbit array of resistive switching random-access memory (RRAM). The classification accuracy of the Wisconsin Breast Cancer data set reaches 95.43%, close to floating-point implementation. Our simulations indicate a 250× improvement in energy efficiency compared to commercial GPUs, thus supporting IMC for energy-efficient ML in modern data-intensive computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call