Abstract
In-line Raman spectroscopy and multivariate analysis were used to monitor Knoevenagel condensation reaction, the final step in preparation of drug entacapone. By applying a fiber optical Raman probe immersed into a reaction vessel Raman spectra of the reaction mixture were recorded in situ during the entacapone synthesis in toluene, heptane and isobutyl acetate. Due to the complexity of the measured spectra, the obtained data were analyzed and interpreted by means of principal component analysis.It has been shown that progress of this reaction can be monitored in real-time and reaction end points can be determined in different solvents. The reaction was found to be the fastest in heptane due to the lower loss of the catalyst. For a comparison the reaction was independently monitored by off-line Raman spectroscopy and liquid chromatography which confirmed the results obtained in-line.The results presented here have shown that this in-line approach can be used as a fast, non destructive and reliable method to monitor the Knoevenagel reaction in real time. The knowledge gained in this study can further be exploited for the industrial process control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.