Abstract

Plants are a desirable source for molecules of all kinds and for every purpose. Besides traditional techniques for extraction, plants are challenging for modern process engineering due to great variations because of their natural origin. One way to ensure high quality and low costs, as well as highly resource-efficient extraction, is in-line monitoring and process control. This study demonstrates the use of in-line Raman spectroscopy for monitoring the extraction of anethole and fenchone from fennel seed as a typical example. A partial least square calibration model with high accuracy was created. (Anethole: R 2 = 0.99, root mean square error of calibration (RMSEC) = 0.01256 g/L, root mean square error of validation (RMSEV) = 0.02608 g/L, and calibration range up to 2 g/L. Fenchone: R 2 = 0.98, RMSEC = 0.01188 g/L, RMSEV = 0.01945 g/L, and calibration up to 0.75 g/L.) These data are directly linked to a physicochemical process model to control the extraction process in real time and to perform predictive simulations while processing. The added value of this approach for modern phytoextraction is highlighted and exemplified as a major step toward sustainable Green Extraction processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.