Abstract

An in-line mixing system mainly consists of an injecting part and a mixing part. We consider that the injecting part will be more important for highly reactive species, because some reactions terminate before the mixture reaches the static mixer. This issue has limited the applications of in-line mixing. In this study, we developed an improved injecting system to resolve this issue. We used a swirl f low ejector (SFE) in which a swirl driving f low is supplied from the entire inner circumferential surface and a suction f low is injected at the center of the channel. Through CFD simulations, we revealed that the suction f low is diffused by the swirl driving f low, and mixing proceeded rapidly. In the early step of mixing, the mixing time of the new system was around four times shorter than that of the conventional system. We also performed an experiment using reactive f luids that gel upon poor mixing, and we clearly demonstrated the effectiveness of the SFE. Finally, we found that the combined use of the SFE and the static mixer is the most effective approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.