Abstract

Underwater acoustic spiral sources can generate spiral acoustic fields where the phase depends on the bearing angle. This allows estimating the bearing angle of a single hydrophone relative to a single source and implementing localization equipment, e.g., for target detection or unmanned underwater vehicle navigation, without requiring an array of hydrophones and/or projectors. A spiral acoustic source prototype made out of a single standard piezoceramic cylinder, which is able to generate both spiral and circular fields, is presented. This paper reports the prototyping process and the multi-frequency acoustic tests performed in a water tank where the spiral source was characterized in terms of the transmitting voltage response, phase, and horizontal and vertical directivity patterns. A receiving calibration method for the spiral source is proposed and showed a maximum angle error of 3° when the calibration and the operation were carried out in the same conditions and a mean angle error of up to 6° for frequencies above 25 kHz when the same conditions were not fulfilled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call