Abstract

BackgroundMandibular reconstruction is conventionally performed freehand, CAD/CAM-assisted, or by using partially adjustable resection aids. CAD/CAM-assisted reconstructions are usually done in cooperation with osteosynthesis manufacturers, which entails additional costs and longer lead time. The purpose of this study is to analyze an in-house, open-source software-based solution for virtual planning.Methods and MaterialsAll consecutive cases between January 2019 and April 2021 that underwent in-house, software-based (Blender) mandibular reconstruction with a free fibula flap (FFF) were included in this cross-sectional study. The pre- and postoperative Digital Imaging and Com munications in Medicine (DICOM) data were converted to standard tessellation language (STL) files. In addition to documenting general information (sex, age, indication for surgery, extent of resection, number of segments, duration of surgery, and ischemia time), conventional measurements and three-dimensional analysis methods (root mean square error [RMSE], mean surface distance [MSD], and Hausdorff distance [HD]) were used.ResultsTwenty consecutive cases were enrolled. Three-dimensional analysis of preoperative and virtually planned neomandibula models was associated with a median RMSE of 1.4 (0.4–7.2), MSD of 0.3 (-0.1–2.9), and HD of 0.7 (0.1–3.1). Three-dimensional comparison of preoperative and postoperative models showed a median RMSE of 2.2 (1.5–11.1), MSD of 0.5 (-0.6–6.1), and HD of 1.5 (1.1–6.5) and the differences were significantly different for RMSE (p < 0.001) and HD (p < 0.001). The difference was not significantly different for MSD (p = 0.554). Three-dimensional analysis of virtual and postoperative models had a median RMSE of 2.3 (1.3–10.7), MSD of -0.1 (-1.0–5.6), and HD of 1.7 (0.1–5.9).ConclusionsOpen-source software-based in-house planning is a feasible, inexpensive, and fast method that enables accurate reconstructions. Additionally, it is excellent for teaching purposes.

Highlights

  • The application of computer-aided design and computer-aided manufacturing (CAD/CAM) technology in primary and secondary mandibular reconstruction with the free fibula flap (FFF) following ablative surgery is considered to be state of the art nowadays

  • CAD/CAM-assisted reconstructions are usually done in cooperation with osteosynthesis manufacturers, which entails additional costs and longer lead time

  • The pre- and postoperative Digital Imaging and Com munications in Medicine (DICOM) data were converted to standard tessellation language (STL) files

Read more

Summary

Introduction

The application of computer-aided design and computer-aided manufacturing (CAD/CAM) technology in primary and secondary mandibular reconstruction with the free fibula flap (FFF) following ablative surgery is considered to be state of the art nowadays. The dependence on the industry reduces flexibility of planning timing and, depending on the complexity of the case, requires a lead time of at least seven to ten working days, during which one to three web meetings are held to discuss the planning and its implementation In this context, two developments can be observed in the daily routine and more recent literature: first, the establishment of low-cost solutions for the in-house production of cutting guides using open-source software and in-house printers [11,12,13,14] and, second, the use of partially adjustable resection aids such as the ReconGuide (KLS Martin Group; Gebrüder Martin GmbH & Co. KG; Tuttlingen, Germany) and the MUC-Jig [15, 16]. The purpose of this study is to analyze an in-house, open-source software-based solution for virtual planning

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call