Abstract

BackgroundSAGE (serial analysis of gene expression) is a recently developed technique for systematic analysis of eukaryotic transcriptomes. The most critical step in the SAGE method is large scale amplification of ditags which are then are concatemerized for the construction of representative SAGE libraries. Here, we report a protocol for purifying these ditags via an 'in situ' PAGE purification method. This generates ditags free of linker contaminations, making library construction simpler and more efficient.ResultsDitags used to generate SAGE libraries were demarcated 'in situ' on preparative polyacrylamide gels using XC and BPB dyes, which precisely straddle the ditag band when a 16% PAGE gel (19:1 acrylamide:bis, 5% cross linker) is used to resolve the DNA bands. Here, the ditag DNA was directly excised from gel without visualization via EtBr or fluorescent dye staining, resulting in highly purified ditag DNA free of contaminating linkers. These ditags could be rapidly self ligated even at 4°C to generate concatemers in a controlled manner, which in turn enabled us to generate highly efficient SAGE libraries. This reduced the labor and time necessary, as well as the cost.ConclusionsThis approach greatly simplified the ditag purification procedure for constructing SAGE libraries. Since the traditional post-run staining with EtBr or fluorescent dyes routinely results in cross contamination of a DNA band of interest by other DNA in the gel, the dry gel DNA excision method described here may also be amenable to other molecular biology techniques in which DNA purity is critically important.

Highlights

  • IntroductionSAGE (serial analysis of gene expression) is a recently developed technique for systematic analysis of eukaryotic transcriptomes

  • SAGE is a recently developed technique for systematic analysis of eukaryotic transcriptomes

  • The 26 bp ditag DNA is well separated from both the BPB and XC dye bands. As it can be observed, the XC dye band migrates precisely at 40 bp, which coincides with the molecular weight of the linker DNA that needs to be completely separated from the 26 bp ditag DNA to prevent 'poisoning' of the concatemers during SAGE library construction

Read more

Summary

Introduction

SAGE (serial analysis of gene expression) is a recently developed technique for systematic analysis of eukaryotic transcriptomes. We report a protocol for purifying these ditags via an 'in situ' PAGE purification method This generates ditags free of linker contaminations, making library construction simpler and more efficient. The commonly followed SAGE protocol [3] uses streptavidin coupled magnetic beads to capture and retain the linker against a magnetic field while the ditags are separated out. This method is costly, due to the large amounts of magnetic beads needed, and time consuming, as multiple wash and recovery cycles are required [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.