Abstract

Due to the strong spin-orbit coupling, silicene is a topological insulator and can open a relatively large energy gap at the Dirac point. Moreover, the applied bias can drive silicene from a topological insulator into an ordinary insulator. Here, we examine the adsorbate effect on the electronic properties of silicene. The calculated local density of states around the adsorbates clearly reveal that the induced localized states contain the band topology information, which can be used to distinguish whether the system is a topological insulator or not. We also explore the impact of randomly distributed adsorbates with a low concentration on the electron structures and the transport properties of silicene, and find that the edge mode backscattering is significantly enhanced when the energies of the incoming modes from leads match that of the in-gap localized states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.