Abstract

Multicellular clusters in circulation can exhibit a substantially different function and biomarker significance compared to individual cells. Notably, clusters of circulating tumor cells (CTCs) are much more effective initiators of metastasis than single CTCs, and correlate with worse patient prognoses. Measuring the cell-cell adhesion strength of CTC clusters is a critical step towards understanding their subsistence in the circulation and mechanism of elevated tumorigenicity. However, measuring cell-cell adhesion forces in flow is elusive using existing methods. Here, we report an oscillatory inertial microfluidics system which exerts a repeating fluidic force profile on suspended cell doublets to determine their cell-cell adhesion strength (Fs), without any biophysical modifications to the cell surface and physiological morphology. Using our system, we analyzed a large number (N > 500) of doublets from a patient-derived breast cancer CTC line. We discovered that the cell-cell adhesion strength of CTC doublets varied almost 20-fold between the weakly adhered (Fs < 28 nN) and strongly bound subpopulations (Fs > 542 nN). Our system can be used with other cancer or noncancer cells without restrictions, and may be used for rapid screening of drugs aiming to disrupt the highly-metastatic CTC clusters in circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.