Abstract

Identifying the drag parameters of unmanned aerial vehicles (UAVs) is crucial for guaranteeing their aerodynamic efficiency. However, in contrast to commercial aircraft, obtaining accurate UAV drag parameters is challenging because the existing approaches rely on analytical models or require accurate modeling of the engine thrust, which highly depends on time-varying wind conditions. To address this challenge, this paper first proposes a novel in-flight estimation algorithm for the air data (airspeed, angle of attack, and sideslip angle) and drag parameters of UAVs. With this approach, there is no need to compute all of the contributing components for drag, to model the thrust of the UAVs, or to perform complicated wind tunnel testing/computational fluid dynamics analysis to obtain the drag parameter. Instead, the proposed algorithm requires only standard sensors such as inertial measurement units and air data systems during gliding flight. Then, an efficient glide phase detection algorithm for initiating the filter is proposed. Simulation and experimental flight testing of a UAV demonstrate that the proposed algorithm yields accurate zero lift drag coefficient, attitude, and air data estimation results according to thorough validation with newly derived metrics for performance evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.