Abstract

This paper presents a novel energy storage solution by incorporating phase change material (PCM) panels in supply ducts to increase a building’s thermal storage capacity and demand flexibility. During off-peak hours, the system runs at a supply air temperature (SAT) below the PCM solidification point to charge the storage unit with “cooling” energy. During on-peak hours, a higher SAT is utilized so that the stored “cooling” energy can be discharged into the supply-air as a means to reduce the peak air-conditioning power usage. To evaluate the potentials of peak demand reduction and utility cost savings, a numerical model for a PCM panel prototype and its heat exchange with the air flow in the duct was developed and calibrated using experimental data. Whole building energy simulations were conducted in a co-simulation environment that has integrated the developed PCM model, EnergyPlus Department of Energy (DOE) prototypical model for a medium office building and a calibrated model for variable-speed direct-expansion cooling systems. The simulations covered five cities in different U.S. climate zones over a three-month cooling season and used actual time-of-use (TOU) rate schedules offered by the local electric utility companies. The simulation results have shown the PCM storage could reduce the on-peak energy consumption by 23–32% and the seasonal cooling electricity cost by up to 16%, with a simple rule-based control strategy. A simple payback analysis resulted in payback periods from 7.5 to 27 cooling months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call