Abstract

It is well-established that thermal annealing optimizes the morphology and improves the efficiency of P3HT-based organic solar cells, but the effects of different cooling rates after annealing are not well understood. In this paper, we use a model system based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) to examine the relationship between morphology and device performance for annealing before (preannealing) and after (postannealing) the application of the electrode, with different cooling rates and in different device architectures. In the conventional structure, postannealing is confirmed to significantly enhance efficiency. The device prepared with a slow cooling rate (3.6%) shows a higher average power conversion efficiency than that prepared with a fast cooling rate (3.3%). The microstructural changes underlying this 10% increase in device performance and further effects of cooling rate, pre- and postannealing, and device architecture are comprehensively examined with a combination of synchrotron-based techniques, including grazing incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. The best device in the conventional architecture (postannealed with slow cooling rate) shows a more face-on orientation and narrower orientational distribution of P3HT crystallites. In addition, postannealing leads to PCBM diffusion toward the blend/top electrode interface. The enrichment of PCBM at the blend/top electrode interface plays a positive role in aiding electron collection at the electrode in the conventional structure, but it has a negative effect on the performance of the inverted structure, where hole collection at the top electrode instead is required. For this reason, in an inverted structure, preannealed films with slow cooling exhibit the best photovoltaic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.