Abstract

Protein modification by lipid-derived electrophiles (LDEs) is associated with various signaling pathways. Among these LDEs, 4-hydroxy-2-nonenal (HNE) is the most toxic, and protein modified with HNE has been linked to various diseases, including Alzheimer's and Parkinson's. However, due to their low abundance, in-depth profiling of HNE modifications still presents challenges. This study introduces a novel strategy utilizing reversible thiazolidine chemistry to selectively capture HNE-modified proteins and a palladium-mediated cleavage reaction to release them. Thousands of HNE-modified sites in different cell lines were identified. Combined with ABPP, we discovered a set of HNE-sensitive sites that offer a new tool for studying LDE modifications in proteomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.