Abstract

Since the feed cost is a major determinant of profitability in poultry industry, how to improve feed efficiency through genetic selection is an intriguing subject for breeders and producers. As a more suitable indicator assessing feed efficiency, residual feed intake (RFI) is defined as the difference between observed and expected feed intake based on maintenance and growth. However, the genetic mechanisms responsible for RFI in chickens are still less well appreciated. In this study, we investigated the duodenal transcriptome architecture of extreme RFI phenotypes in the six brown-egg dwarf hens (three per group) using RNA sequencing technology. Among all mapped reads, an average of 75.62% fell into annotated exons, 5.50% were located in introns, and the remaining 18.88% were assigned to intergenic regions. In total, we identified 41 promising candidate genes by differential expression analysis between the low and high RFI groups. Furthermore, qRT-PCR assays were designed for 10 randomly chosen genes, and nine (90.00%) were successfully validated. Functional annotation analyses revealed that these significant genes belong to several specific biological functions related to digestibility, metabolism and biosynthesis processes as well as energy homeostasis. We also predicted 253 intergenic coding transcripts, and these transcripts were mainly involved in fundamental biological regulation and metabolism processes. Our findings provided a pioneering exploration of biological basis underlying divergent RFI using RNA-Seq, which pinpoints promising candidate genes of functional relevance, is helpful to guide future breeding strategies to optimize feed efficiency and assists in improving the current gene annotation in chickens.

Highlights

  • Chicken meat and egg products continue to be an important source of nutrition for most people around the world

  • The vast majority of which (73.79–78.20%) fell into annotated exons, 16.27–20.59% was within the large intergenic territory, and only 4.85–5.98% was located in introns (Fig 1)

  • We conducted a comprehensive differential expression analysis and characterized global trancriptome architectures based on high-quality RNA sequencing (RNA-Seq) data, and subsequently performed functional annotation for these putative associated genes and protein-coding transcripts

Read more

Summary

Introduction

Chicken meat and egg products continue to be an important source of nutrition for most people around the world. Global Transcriptome Profiling for Feed Efficiency data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call