Abstract
Abstract. Atmospheric aerosols play an important role in air pollution. Aerosol particle chemical composition is highly variable depending on the season, hour of the day, day of the week, meteorology, and location of the measurement site. Long measurement periods and highly time-resolved data are required in order to achieve a statistically relevant amount of data for assessing those variations and evaluating pollution episodes. In this study, we present continuous atmospheric PM1 (particulate matter < 1 µm) concentration and composition measurements at an urban street canyon site located in Helsinki, Finland. The study was performed for 4.5 years (2015–2019) and involved highly time-resolved measurements by taking advantage of a suite of online state-of-the-art instruments such as an aerosol chemical speciation monitor (ACSM), a multi-angle absorption photometer (MAAP), a differential mobility particle sizer (DMPS), and an Aethalometer (AE). PM1 consisted mostly of organics, with mean mass concentrations of 2.89 µg m−3 (53 % of PM1) followed by inorganic species (1.56 µg m−3, 29 %) and equivalent black carbon (eBC, 0.97 µg m−3, 18 %). A trend analysis revealed a decrease in BC from fossil fuel (BCFF), organics, and nitrate over the studied years. Clear seasonal and/or diurnal variations were found for the measured atmospheric PM1 constituents. Particle number and mass size distributions over different seasons revealed the possible influence of secondary organic aerosols (SOAs) during summer and the dominance of ultrafine traffic aerosols during winter. The seasonality of measured constituents also impacted the particle's coating and absorptive properties. The investigation of pollution episodes observed at the site showed that a large fraction of aerosol particle mass was comprised of inorganic species during long-range transport, while during local episodes eBC and organics prevailed together with elevated particle number concentration. Overall, the results increased knowledge of the variability of PM1 concentration and composition in a Nordic traffic site and its implications on urban air quality. Considering the effects of PM mitigation policies in northern Europe in the last decades, the results obtained in this study may be considered illustrative of probable future air quality challenges in countries currently adopting similar environmental regulations.
Highlights
Increasing concentrations of ambient particulate matter (PM) due to fast industrialization, urbanization, and economic growth have become a worldwide concern during the past decades
This study was performed during a period of 4.5 years, by employing a variety of instruments for characterizing PM1: an aerosol chemical speciation monitor (ACSM) for the characterization of non-refractory PM1 (NR-PM1) constituents, a multi-angle absorption photometer (MAAP) for the measurement of equivalent black carbon, and an Aethalometer for the source apportionment of eBC
Monthly mean values of NR-PM1 constituents measured by ACSM and eBC measured by MAAP were used to calculate the mean density per month, which was employed to determine the monthly mean mass concentration of particles measured by differential mobility particle sizer (DMPS)
Summary
Increasing concentrations of ambient particulate matter (PM) due to fast industrialization, urbanization, and economic growth have become a worldwide concern during the past decades. The main local anthropogenic fine particle sources in Nordic cities are residential wood burning, traffic-related emissions, energy production, and industrial processes (Korhonen et al, 2019), but pollution episodes originating from long-range transport can significantly influence the measured atmospheric aerosols We present continuous in-depth chemical characterization and size distribution measurements of atmospheric PM1 at a busy street canyon site located in Helsinki, Finland. This study was performed during a period of 4.5 years, by employing a variety of instruments for characterizing PM1: an aerosol chemical speciation monitor (ACSM) for the characterization of non-refractory PM1 (NR-PM1) constituents, a multi-angle absorption photometer (MAAP) for the measurement of equivalent black carbon (eBC), and an Aethalometer for the source apportionment of eBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.