Abstract

Objective Motor vehicle crashes remain a significant problem. Advanced driver assistance systems (ADAS) have the potential to reduce crash incidence and severity, but their optimization requires a comprehensive understanding of driver-specific errors and environmental hazards in real-world crash scenarios. Therefore, the objectives of this study were to quantify contributing factors using the Strategic Highway Research Program 2 (SHRP 2) Naturalistic Driving Study (NDS), identify potential ADAS interventions, and make suggestions to optimize ADAS for real-world crash scenarios. Methods A subset of the SHRP 2 NDS consisting of at-fault crashes (n = 369) among teens (16–19 yrs), young adults (20–24 yrs), adults (35–54 yrs) and older adults (70+ yrs) were reviewed to identify contributing factors and potential ADAS interventions. Contributing factors were classified according to National Motor Vehicle Crash Causation Survey pre-crash assessment variable elements. A single critical factor was selected among the contributing factors for each crash. Case reviews with a multidisciplinary panel of industry experts were conducted to develop suggestions for ADAS optimization. Critical factors were compared across at-risk driving groups, gender, and incident type using chi-square statistics and multinomial logistic regression. Results Driver error was the critical factor in 94% of crashes. Recognition error (56%), including internal distraction and inadequate surveillance, was the most common driver error sub-type. Teens and young adults exhibited greater decision errors compared to older adults (p < 0.01). Older adults exhibited greater performance errors (p < 0.05) compared to teens and young adults. Automatic emergency braking (AEB) had the greatest potential to mitigate crashes (48%), followed by vehicle-to-vehicle communication (38%) and driver monitoring (24%). ADAS suggestions for optimization included (1) implementing adaptive forward collision warning, AEB, high-speed warning, and curve-speed warning to account for road surface conditions (2) ensuring detection of nonstandard road objects, (3) vehicle-to-vehicle communication alerting drivers to cross-traffic, (4) vehicle-to-infrastructure communication alerting drivers to the presence of pedestrians in crosswalks, and (5) optimizing lane keeping assist for end-departures and pedal confusion. Conclusions These data provide stakeholders with a comprehensive understanding of critical factors among at-risk drivers as well as suggestions for ADAS improvements based on naturalistic data. Such data can be used to optimize ADAS for driver-specific errors and help develop more robust vehicle test procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.